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Cluster Monte Carlo: Scaling of systematic errors in the two-dimensional Ising model
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We present an extensive analysis of systematic deviations in Wolff cluster simulations of the critical Ising
model, using random numbers generated by binary shift registers. We investigate how these deviations depend
on the lattice size, the shift-register length, and the number of bits correlated by the production rule. They
appear to satisfy scaling relatiof$1063-651X97)50905-4

PACS numbsgs): 02.70.Lg, 02.50.Ng, 05.58.q, 06.20.Dk

The main advantage of cluster Monte Carlo algorithms idength is the mean Wolff cluster size). The second char-
that they suppress critical slowing dowh,2]. For this rea- acteristic length is the sizp of the shift register. The pro-
son, cluster algorithms are being explored extensiy8ly  duction rule
This has even led to the construction of special-purpose pro- Xn=Xn_p®Xn_q. )
cessors using the Wolff cluster algoritHmh,5].

The problem of generating random numbers of sufficieniyheree is the “exclusiveor” operation, leads to three-bit
quality is known to be complicated since the first computercorrelations over a lengtp. So, it not surprising that the
experimentg6]. Many of the widely used algorithms are of |argest deviations occur at the lattice sizg,, for which
the shift-registefSR) type[7]. These are extremely fai8],  these two lengths coincide. Since the mean Wolff cluster size

can be implemented simply in hardwd&10], and produce pehaveq?2] as the magnetic susceptibility, we expect at
“good random numbers” with an extremely long peripd. criticality that

Ferrenberg, Landau, and Wohiyl] found that the com- e
bination of the two most efficient algorithnihe Wolff clus- P X L inax: 2
ter algorithm and the shift-register random-number genera- o )
tor) produced large systematic deviations for the two-Wherey and v are Fhe susceptibility and correlation length
dimensional(2D) Ising model on a 18 16 lattice (see also  €XPonents, respectively. _ _
[12]). Also random-walk algorithms appeared to be sensitive Ve performed Wolff simulations of the 2D Ising model at
to effects due to the random-number genertdj. criticality, using SR with feedback ppsmorjp,(q) =(36,1D),
Remarkably, we did not find visible deviations in simula- (8938, (127,69, and (250,103 as listed in Ref[15] and
tions[4,14] performed on the special-purpose processor wit€ferences therein. For each pap, () we took 100 samples
the Wolff algorithm and a Kirkpatrick-Stoll random-number of 10° Wolff clusters. 7‘5’4hus we determined the coefﬁmentlln
generator for lattices larger than 28@56. Eq. (2): p=1.09(1) Ly, Here, and below, the numbers in
Motivated by this paradoxical situation, we made an ex-Parentheses indicate the statistical errors.
tensive analysis of this problem using Silicon Graphics The results for the energy deviatioAE=(E/E.,— 1) are
workstations at the Delft University and a DEC AXP 4000/ plotted in Fig. 1. The exact results are taken from RR&8).
620 server at the Landau Institute. A total of about 2000 h offhe maximum deviations occur at= 7, 12, 15, and 22,
CPU time was spent. respectively, in agreement with E(R). The inset in Fig. 1
We find several interesting facts. First, the maximum dedisplays the maximum deviations of the ene@y . as a
viations occur at lattice sizes for which the average Wolfffunction of the shift-register length. A fit yield$E ;.
cluster size coincides with the lengghof the SR. o~ 0-88(2),
Second, the deviations obey scaling laws with respect to_The resulting data collapse for the scaled deviations
p: they can be collapsed on a single curve. This opens théE=p®5E is shown in Fig. 2 versus the scaled system size
possibility to predict the magnitude of the systematic error{Ep*0-43(5)|__ The linear decay on the right obeyE~
in a given quantity, depending on the lattice size, the shift-,|"-0.84(4)
register length, and, to some extent, also on the number of |t he data forL>p*7 keep following the linear trend in

terms in productiqn .ruIe. ) ) Fig. 2, the maximum possible deviations can be described by
Third, the deviations change sign when we invert theg|ation

range of the random numbek—1—x. This provides a 084052
simple test, in two runs only, for the presence of systematic SE=0.3L"%*p : ©)
errors.

Finally, we introduce a simple 1D random-walker model ~ The results for(127,64 do not fit the curve well. This is
explaining how the correlations in the SR lead to a bias inn0 surprise because shift registers withd) close to powers
Monte Carlo results. of 2 are knowr{17] to produce relatively poor random num-

As a first step in understanding the results, it is natural tdo€rs.
compare the length scales associated with the Monte Carlo Similarly, we sampled the deviation of the specific heat
process and the random generator. The first characteristié. Figure 3 shows scaled deviation€=p®*12)5C versus
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the scaled system size which is the same as$karFor large  Now, we simulate this model using a SR random-number
L this curve behaves atCo L ~%242) The deviations satisfy generator. Each walk starts directly after completion of the
preceding one, without skipping any random numbers. First,
—5C=0.85.7%%1p~ 042, (4 we use the “positive” conditiorx,,= u for stopping. Thus,
the random number at the start always fulfills the condition
but they can also be decribed in terms of a logarithmLof x> ., which ended the preceding walk.
plus a constant. In the simplest casg=1/2, only the leading bit affects
Figure 4 shows analogous results for the dimensionlesgis condition. As long as the walk proceeds, the leading bits
ratio Q=(m?)?/(m*), which is related to the Binder cumu- of the random numbers, are zero. Afterp—1 successful
lant [18], using 5Q= 6Qp®®*™) along the vertical scale. On moves, the SR algorithm will produce a numbgrwith the

the right-hand side the data behave &3xL %45 Ex-  leading bit equal to 1. Thus the walker cannot visit more than
trapolation leads to p nodes. o ' N o
5Q=0.244 ~045,-041 5) A probabilistically equivalent condition for stopping is

the “negative” conditionx,<1— w. Then, the leading bit of
Xg must be 0, and fog, (n=1) it is 1 until the walk ends.

In order to explain the origin of the observed deviations, .
e walk cannot stop at th@=p, since x,®x, =0

we present a simple model that captures the essentials of tHd
Wolff cluster formation process. This model simulates a di-91= L
rected random walk in one dimensifit9]. At discrete times, One can calculate the deviation from the exact value of
the walker makes a step to the right with probabilyy ~ P(N) atn=p, n=p-+q and at all linear combinations of

otherwise, the walk ends. The probability to visit precisely"UmPersp and g. The detailed analysis will appear else-
n consecutive nodes is where[19] and here we only mention that the probability

deviation 6P(n)=(P¢omdN) — Ped(N))/Pe(n) at n=p for
PedM)=u""3(1—pw). (6) the posititive condition is equal to )/ u. It is important

FIG. 2. Scaled deviation of the energ§f vs
the scaled system size, for several SR. The sym-
bols are defined in the caption to Fig. 1.
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that a deviation, even at only one pointp, results in a pects a change of sign of the systematic errors. We con-
deviation of the probability function for the points>p by  firmed this for the 2D Ising model.

SP(n)=(2u—1)% u*—1<0. The deviations at the “reso- A simple modification of the SR1) is to use only one out
nances"n=ip+jq (i=1,2,..., and-i<j<i) are positive  of everym random numbers generated by the production rule
and lead to negative deviations of the next points. [11,12. If m=2 k=(1,2,...) this will lead to the same

Thus, in the case of the positive condition, most of theproduction rule(1). For m=3 and, as an example, for SR
SP(n) are negative. In the case of the negative condition(36,11 the resulting production rule ¥86,24,12,1} a five-
5P(n) is negative fon=p2* (k=0,1,2...);thisresultsin  point production rule, i.e., X,=X,_36®Xn— 248 Xn_12
positive deviations for the following points. ®X,_11. However, the lowest-order correlations of the re-

In effect, this replaces the probability by a new “effec-  sulting random numbers do not occur rat p= 36, but at
tive” probability u*, with u* > u for the positive condition n=48 because the production rule is equivalent with a four-
and u* <pu for the negative condition for most>p. This  point one, namely(48,23,1] [20]. The effect due to four-
provides a qualitative explanation of the deviations in Wolff point correlations appears to dominate over the five-bit ef-
simulations. The completion of a Wolff cluster is strongly fects for u>1/2. The deviation®P(n) of Eq. (6) resemble
correlated with the value of the random numbers used at thahose for a three-point production rule. But farclose to 1
time. Thus, the three-bit correlations generated by the prothey stand out only at=48k, k=1,2, ..., and not dinear
duction rule lead to two-bit correlations in the followigg ~ combinations of other magic numbers. Their sign is the same
random numbers. In particular, when the mean Wolff clustefor the positive and negative conditions because the four-
size is aboutp, one may expect serious deviations in thepoint rule correlates an even number of bits.
calculated quantities. Next, we investigated these four-bit effects in the case of

When one replaces the positive by the negative conditionyWolff simulations, using every third number produced by the
in effect the three-bit correlation is inverted. Thus one ex-rules (36,11 and (89,38, and runs of 19 clusters. The de-
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TABLE I. Deviations of energyE, specific heabC and ratio  the 3D Ising model. The deviations can also be collapsed on

0Q. The statistical error in the last decimal place is shown betweemniversal curves, but the exponents and amplitudes differ

parentheses. We used a shift-register lengti36 for L=7 and  from the 2D case.

p=289 forL=12. The bias appears to depend strongly on the num-  \ya conclude that the 1D model provides a useful way for

berm, of bits correlated by the production rule. the analysis of random numbers, in particular, for the detec-

tion of harmful correlations in SR sequences. The errors in

- e e oc Q Wolff simulations induced by these correlations satisfy scal-
7 0.007 79710)  -0.094 307(52)  0.014 442(10) ing relations which have a considerable significance for
7 -0.000 35613) 0.005894(69) -0.000 720(14) large-scale Wolff simulations. For instance, they confirm that
7 -0.000 060(11) 0.001122(60) -0.000 133(15) in recent simulation$14] of the random bond Ising model

3
4
5
with lattice sizesL greater than 128, the bias due to the
12 3 0.0033459)  -0.066 797(65)  0.009 577(13) (250,103 Kirkpatrick-Stoll rule was less than the statistical
4 -0.00014915 0.003296(79 -0.000274(18)  arrors.
5 -0.00000311) 0.000136(89  -0.000 009(15) As explained above, three-bit correlations in a SR produc-
tion rule lead to two-bit correlations in the firpt random
umbers used for the construction of a new Wolff cluster. If
the size of the latter grows large in comparison withthe
two-bit effect will decrease because the amount of correla-
tion contained in the firsp numbers remains finite. Indeed,
this is in agreement with the power-law decay on the right-
hand sides of Figs. 2—4. Although three-bit effects seem to
be much smaller in the casels, ) investigated by us, there
is no reason to believe that they are absent. Thus, eventually
they are expected to end the aforementioned power-law de-

viations obey the same scaling laws, but the amplitudes a
about 20 times smaller for each of the quantitiesC, and
Q, in accordance with the behavior of the 1D motide the
asterisks in Fig. 2

For m=5—using only every fifth numberl1l]—the ef-
fective production rule correlates five bif0]. It leads to
deviations in 1D model, in particular, at=pk, k=2".
They are less than for the SR of Ed) [19].

Very long simulations, using100 samples< 10" Wolff
steps form=5, show that the deviations are even smaller®®

than form=3. Table | displays data for SR36,11 and We are much indebted to J.R. Heringa for contributing his
(89,38 at lattice sized =7 andL=12, respectively. Similar valuable insight in the mathematics of shift-register se-
data are included fom=3 and form=1. quences. We acknowledge productive discussions with A.

So, we propose, in addition, that the systematic deviation€ompagner, S. Nechaev, V.L. Pokrovsky, W. Selke, Ya.G.
of 2D Ising Wolff simulations are described by E¢3)—(5) Sinai, D. Stauffer, and A.L. Talapov. L.N.S. thanks the Delft
for all SR-type algorithms, but the coefficients should beComputational Physics Group, where most of the work has
corrected with a factor of roughly T¢™~2), wherem, is  been done, for their kind hospitality. This work is partially
the number of bits correlated by the production rule. supported by Grant Nos. RFBR 93-02-2018, NWO 07-13-

A preliminary analysig21] confirms relation(2) also for 210, INTAS-93-211, and ISF MOQOOO.
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