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Cluster Monte Carlo: Scaling of systematic errors in the two-dimensional Ising model
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We present an extensive analysis of systematic deviations in Wolff cluster simulations of the critical Ising
model, using random numbers generated by binary shift registers. We investigate how these deviations depend
on the lattice size, the shift-register length, and the number of bits correlated by the production rule. They
appear to satisfy scaling relations.@S1063-651X~97!50905-6#

PACS number~s!: 02.70.Lq, 02.50.Ng, 05.50.1q, 06.20.Dk
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The main advantage of cluster Monte Carlo algorithms
that they suppress critical slowing down@1,2#. For this rea-
son, cluster algorithms are being explored extensively@3#.
This has even led to the construction of special-purpose
cessors using the Wolff cluster algorithm@4,5#.

The problem of generating random numbers of suffici
quality is known to be complicated since the first compu
experiments@6#. Many of the widely used algorithms are o
the shift-register~SR! type @7#. These are extremely fast@8#,
can be implemented simply in hardware@9,10#, and produce
‘‘good random numbers’’ with an extremely long period@7#.

Ferrenberg, Landau, and Wong@11# found that the com-
bination of the two most efficient algorithms~the Wolff clus-
ter algorithm and the shift-register random-number gene
tor! produced large systematic deviations for the tw
dimensional~2D! Ising model on a 16316 lattice~see also
@12#!. Also random-walk algorithms appeared to be sensit
to effects due to the random-number generator@13#.

Remarkably, we did not find visible deviations in simul
tions @4,14# performed on the special-purpose processor w
the Wolff algorithm and a Kirkpatrick-Stoll random-numb
generator for lattices larger than 2563256.

Motivated by this paradoxical situation, we made an e
tensive analysis of this problem using Silicon Graph
workstations at the Delft University and a DEC AXP 400
620 server at the Landau Institute. A total of about 2000 h
CPU time was spent.

We find several interesting facts. First, the maximum
viations occur at lattice sizes for which the average Wo
cluster size coincides with the lengthp of the SR.

Second, the deviations obey scaling laws with respec
p: they can be collapsed on a single curve. This opens
possibility to predict the magnitude of the systematic err
in a given quantity, depending on the lattice size, the sh
register length, and, to some extent, also on the numbe
terms in production rule.

Third, the deviations change sign when we invert t
range of the random number:x→12x. This provides a
simple test, in two runs only, for the presence of system
errors.

Finally, we introduce a simple 1D random-walker mod
explaining how the correlations in the SR lead to a bias
Monte Carlo results.

As a first step in understanding the results, it is natura
compare the length scales associated with the Monte C
process and the random generator. The first character
551063-651X/97/55~5!/4905~4!/$10.00
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length is the mean Wolff cluster size^c&. The second char-
acteristic length is the sizep of the shift register. The pro-
duction rule

xn5xn2p%xn2q , ~1!

where% is the ‘‘exclusiveOR’’ operation, leads to three-bi
correlations over a lengthp. So, it not surprising that the
largest deviations occur at the lattice sizeLmax for which
these two lengths coincide. Since the mean Wolff cluster s
behaves@2# as the magnetic susceptibilityx, we expect at
criticality that

p}x}Lmax
g/n , ~2!

whereg and n are the susceptibility and correlation leng
exponents, respectively.

We performed Wolff simulations of the 2D Ising model
criticality, using SR with feedback positions (p,q) 5~36,11!,
~89,38!, ~127,64!, and ~250,103! as listed in Ref.@15# and
references therein. For each pair (p,L) we took 100 samples
of 106 Wolff clusters. Thus we determined the coefficient
Eq. ~2!: p51.09(1) Lmax

7/4 . Here, and below, the numbers i
parentheses indicate the statistical errors.

The results for the energy deviationsdE[^E/Eex21& are
plotted in Fig. 1. The exact results are taken from Ref.@16#.
The maximum deviations occur atL5 7, 12, 15, and 22,
respectively, in agreement with Eq.~2!. The inset in Fig. 1
displays the maximum deviations of the energydEmax as a
function of the shift-register length. A fit yieldsdEmax

}p20.88(2).
The resulting data collapse for the scaled deviatio

dẼ[p0.88dE is shown in Fig. 2 versus the scaled system s
L̃[p20.43(5)L. The linear decay on the right obeysdẼ
}L̃20.84(4).

If the data forL.p4/7 keep following the linear trend in
Fig. 2, the maximum possible deviations can be described
relation

dE&0.3L20.84p20.52. ~3!

The results for~127,64! do not fit the curve well. This is
no surprise because shift registers with (p,q) close to powers
of 2 are known@17# to produce relatively poor random num
bers.

Similarly, we sampled the deviation of the specific he
C. Figure 3 shows scaled deviationsdC̃[p0.51(2)dC versus
R4905 © 1997 The American Physical Society
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FIG. 1. Energy deviationsdE for several SR,
namely, ~36,11!: s; ~89,38!: 1; ~127,64!: h;
and~250,103!: m. The inset shows the maximum
value ofdE as a function ofp.
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the scaled system size which is the same as fordE. For large
L̃ this curve behaves asdC̃}L̃20.21(2). The deviations satisfy

2dC&0.85L20.21p20.42, ~4!

but they can also be decribed in terms of a logarithm oL
plus a constant.

Figure 4 shows analogous results for the dimension
ratio Q5^m2&2/^m4&, which is related to the Binder cumu
lant @18#, usingdQ̃5dQp0.60(1) along the vertical scale. On
the right-hand side the data behave asdQ̃}L̃20.45(5). Ex-
trapolation leads to

dQ&0.244L20.45p20.41. ~5!

In order to explain the origin of the observed deviation
we present a simple model that captures the essentials o
Wolff cluster formation process. This model simulates a
rected random walk in one dimension@19#. At discrete times,
the walker makes a step to the right with probabilitym;
otherwise, the walk ends. The probability to visit precise
n consecutive nodes is

Pex~n!5mn21~12m!. ~6!
ss

,
the
-

Now, we simulate this model using a SR random-num
generator. Each walk starts directly after completion of
preceding one, without skipping any random numbers. Fi
we use the ‘‘positive’’ conditionxn>m for stopping. Thus,
the random number at the start always fulfills the condit
x0>m, which ended the preceding walk.

In the simplest casem51/2, only the leading bit affects
this condition. As long as the walk proceeds, the leading
of the random numbersxn are zero. Afterp21 successful
moves, the SR algorithm will produce a numberxp with the
leading bit equal to 1. Thus the walker cannot visit more th
p nodes.

A probabilistically equivalent condition for stopping i
the ‘‘negative’’ conditionxn,12m. Then, the leading bit of
x0 must be 0, and forxn (n>1) it is 1 until the walk ends.
The walk cannot stop at then5p, since xp%xp2q50
%151.
One can calculate the deviation from the exact value

P(n) at n5p, n5p1q and at all linear combinations o
numbersp and q. The detailed analysis will appear els
where @19# and here we only mention that the probabili
deviation dP(n)5„Pcomp(n)2Pex(n)…/Pex(n) at n5p for
the posititive condition is equal to (12m)/m. It is important
m-

FIG. 2. Scaled deviation of the energydE vs

the scaled system size, for several SR. The sy
bols are defined in the caption to Fig. 1.
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FIG. 3. Scaled deviation of specific heatdC
vs the scaled system size, for several SR. T
symbols are defined in the caption to Fig. 1.
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that a deviation, even at only one pointn5p, results in a
deviation of the probability function for the pointsn.p by
dP(n)5(2m21)2/m421,0. The deviations at the ‘‘reso
nances’’n5 ip1 jq ( i51,2, . . . , and2 i, j, i ) are positive
and lead to negative deviations of the next points.

Thus, in the case of the positive condition, most of t
dP(n) are negative. In the case of the negative conditi
dP(n) is negative forn5p2k (k50,1,2, . . . ); this results in
positive deviations for the following points.

In effect, this replaces the probabilitym by a new ‘‘effec-
tive’’ probability m* , with m*.m for the positive condition
andm*,m for the negative condition for mostn.p. This
provides a qualitative explanation of the deviations in Wo
simulations. The completion of a Wolff cluster is strong
correlated with the value of the random numbers used at
time. Thus, the three-bit correlations generated by the p
duction rule lead to two-bit correlations in the followingp
random numbers. In particular, when the mean Wolff clus
size is aboutp, one may expect serious deviations in t
calculated quantities.

When one replaces the positive by the negative condit
in effect the three-bit correlation is inverted. Thus one e
,

f

at
o-

r

n,
-

pects a change of sign of the systematic errors. We c
firmed this for the 2D Ising model.

A simple modification of the SR~1! is to use only one out
of everym random numbers generated by the production r
@11,12#. If m52k, k5(1,2, . . . ) this will lead to the same
production rule~1!. For m53 and, as an example, for S
~36,11! the resulting production rule is~36,24,12,11!: a five-
point production rule, i.e., xn5xn236%xn224%xn212
%xn211. However, the lowest-order correlations of the r
sulting random numbers do not occur atn5p536, but at
n548 because the production rule is equivalent with a fo
point one, namely,~48,23,11! @20#. The effect due to four-
point correlations appears to dominate over the five-bit
fects form.1/2. The deviationsdP(n) of Eq. ~6! resemble
those for a three-point production rule. But form close to 1
they stand out only atn548k, k51,2, . . . , and not atlinear
combinations of other magic numbers. Their sign is the sa
for the positive and negative conditions because the fo
point rule correlates an even number of bits.

Next, we investigated these four-bit effects in the case
Wolff simulations, using every third number produced by t
rules ~36,11! and ~89,38!, and runs of 109 clusters. The de-
a-
R.
1.
FIG. 4. Scaled deviation of dimensionless r
tio dQ vs the scaled system size, for several S
The symbols are defined in the caption to Fig.
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viations obey the same scaling laws, but the amplitudes
about 20 times smaller for each of the quantitiesE, C, and
Q, in accordance with the behavior of the 1D model~see the
asterisks in Fig. 2!.

For m55—using only every fifth number@11#—the ef-
fective production rule correlates five bits@20#. It leads to
deviations in 1D model, in particular, atn5pk, k52i .
They are less than for the SR of Eq.~1! @19#.

Very long simulations, using~100 samples!3107 Wolff
steps form55, show that the deviations are even smal
than for m53. Table I displays data for SR~36,11! and
~89,38! at lattice sizesL57 andL512, respectively. Similar
data are included form53 and form51.

So, we propose, in addition, that the systematic deviati
of 2D Ising Wolff simulations are described by Eqs.~3!–~5!
for all SR-type algorithms, but the coefficients should
corrected with a factor of roughly 102(mc23), wheremc is
the number of bits correlated by the production rule.

A preliminary analysis@21# confirms relation~2! also for

TABLE I. Deviations of energydE, specific heatdC and ratio
dQ. The statistical error in the last decimal place is shown betw
parentheses. We used a shift-register lengthp536 for L57 and
p589 for L512. The bias appears to depend strongly on the nu
bermc of bits correlated by the production rule.

L mc dE dC dQ

7 3 0.007 797~10! -0.094 307~52! 0.014 442~10!
7 4 -0.000 356~13! 0.005 894~69! -0.000 720~14!
7 5 -0.000 060~11! 0.001 122~60! -0.000 133~15!

12 3 0.003 345~9! -0.066 797~65! 0.009 577~13!
12 4 -0.000 149~15! 0.003 296~79! -0.000 274~18!
12 5 -0.000 003~11! 0.000 136~89! -0.000 009~15!
.
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the 3D Ising model. The deviations can also be collapsed
universal curves, but the exponents and amplitudes di
from the 2D case.

We conclude that the 1D model provides a useful way
the analysis of random numbers, in particular, for the det
tion of harmful correlations in SR sequences. The errors
Wolff simulations induced by these correlations satisfy sc
ing relations which have a considerable significance
large-scale Wolff simulations. For instance, they confirm t
in recent simulations@14# of the random bond Ising mode
with lattice sizesL greater than 128, the bias due to th
~250,103! Kirkpatrick-Stoll rule was less than the statistic
errors.

As explained above, three-bit correlations in a SR prod
tion rule lead to two-bit correlations in the firstp random
numbers used for the construction of a new Wolff cluster
the size of the latter grows large in comparison withp, the
two-bit effect will decrease because the amount of corre
tion contained in the firstp numbers remains finite. Indeed
this is in agreement with the power-law decay on the rig
hand sides of Figs. 2–4. Although three-bit effects seem
be much smaller in the cases (L,p) investigated by us, there
is no reason to believe that they are absent. Thus, eventu
they are expected to end the aforementioned power-law
cay.
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quences. We acknowledge productive discussions with
Compagner, S. Nechaev, V.L. Pokrovsky, W. Selke, Ya
Sinai, D. Stauffer, and A.L. Talapov. L.N.S. thanks the De
Computational Physics Group, where most of the work h
been done, for their kind hospitality. This work is partial
supported by Grant Nos. RFBR 93-02-2018, NWO 07-1
210, INTAS-93-211, and ISF MOQ000.
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